Inmunología de infecciones fúngicas y parasitarias

Grupo de Investigación
Inmuno modulación por parásitos helmintos
Inmuno modulación por parásitos helmintos

Proyecto de Respuesta Inmune a Helmintos

Directora: Dra. Laura Cervi

En las infecciones por helmintos, estos parásitos secretan una cantidad de productos capaces de modular la respuesta inmune innata y generar la polarización de la respuesta inmune adaptativa hacia un perfil de tipo Th2. Conjuntamente, se genera una respuesta de tipo regulatoria para evitar una excesiva respuesta inmune que podría resultar dañina para el parásito y/o el huésped.
En nuestro laboratorio investigamos la capacidad de algunas moléculas del helminto parásito Fasciola hepatica para modular la respuesta inmune, tanto en la generación de respuestas inflamatorias, para una posible aplicación en vacunas, y/o en la generación de respuestas regulatorias.
Demostramos la habilidad de un extracto total del parásito (ET) en combinación con un ligando para receptores de tipo Tol, para inducir propiedades tolerógenicas en células dendríticas murinas, las cuales inyectadas en ratones, resultaron eficientes para prevenir los síntomas de la artritis inducida por colágeno. Recientemente identificamos una proteína, el inhibidor de proteasa Kunitz (IPK), la cual se expresa abundantemente en el tegumento, intestino, y en la vómica del parásito, con propiedades inhibitorias de la maduración de células dendríticas y de respuestas inflamatorias alogénicas. Estas propiedades sugieren la posible utilización de IPK en el control de respuestas inflamatorias exacerbadas.
Por otra parte, actualmente estamos interesados en el desarrollo de vacunas contra el parásito, utilizando como antígenos a las proteínas IPK y/o catepsina L3 (altamente expresada en el parásito y muy poco estudiada) formulada con una nanoestructura de cristal líquido como adyuvante en ratones. Se investigan las células y moléculas involucradas en los mecanismos de protección generados por la inmunización con las vacunas propuestas y su posible transferencia al ganado vacuno.

Proyecto de Inmunidad Antifúngica

Directora: Dra. Laura S. Chiapello

En nuestro laboratorio investigamos los mecanismos de la inmunidad antifúngica y en particular, la respuesta contra hongos patógenos humanos de la piel. Utilizando un modelo murino de infección epicutánea con el dermatofito Microsporum canis, el cual mimetiza las dermatomicosis humanas, estudiamos in vivo la función de las células dendríticas epidérmicas (células de Langerhans) y la participación de la interleuquina 17 (IL-17) en el control de la invasión fúngica y en la regulación de la respuesta inflamatoria. Nuestras investigaciones demuestran la importancia de la señalización de las distintas isoformas de IL-17 en la protección de la piel frente a los hongos dermatofitos y sugieren que la regulación de la inflamación cutánea, por estas citoquinas, podría determinar las distintas formas clínicas observadas en los pacientes.
Con el propósito de trasladar los conocimientos básicos de los modelos experimentales a la patología humana, trabajamos en forma conjunta con el Servicio de Dermatología del Hospital Pediátrico de Córdoba. De esta manera logramos establecer la epidemiología de las infecciones fúngicas, determinando las formas clínicas más frecuentes y los especies de hongos predominantes en nuestro medio. En este contexto, estandarizamos una metodología molecular (PCR fingerprinting), no disponible hasta entonces en nuestro país, para la identificación y epidemiología de dermatofitos. El estudio de los pacientes con infecciones fúngicas nos permitió reportar características inmunogenéticas en una paciente pediátrica con una dermatofitosis crónica y resistente al tratamiento antifúngico. Actualmente, siguiendo los resultados de las investigaciones experimentales en ratones, iniciamos estudios de inmunidad celular en pacientes para determinar el rol del balance IL-17/INF-γ en las distintas formas clínicas de las dermatofitosis. Utilizando los modelos experimentales y sistemas in vitro con células humanas, nuestro objetivo es determinar los factores de virulencia de los dermatofitos (proteasas, pared celular) y los mecanismos celulares y moleculares de la piel que definen y modulan la inmunidad antifúngica.

Publicaciones del proyecto de Respuesta Inmune a Helmintos

2014. Fasciola hepaticaKunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses. Falcón CR, Masih D, Gatti G, Sanchez MC, Motrán CC, Cervi L. PLoS One. 8:9(12).
2014. In vivo expression of recombinant pregnancy-specific glycoprotein 1a inhibits the symptoms of collagen-induced arthritis. Falcón CR, Martínez FF, Carranza F, Cervi L*, Motrán CC*. Am J Reprod Immunol. 72:527-33.
*These authors contribute equally to this study.
2014. Modulation of Dendritic Cell Maturation by Fasciola hepatica: Implications of glycans and mucins for Vaccine Development. Noya V, Rodriguez E, Cervi L., Giacomini CBrossard N, Chiale C, Carmona C and Freire T. J Vaccines Vaccination 2014, 5:4-8.
2012. Helminth antigens enable CpG-activated dendritic cells to inhibit the symptomsof collagen-induced arthritis through Foxp3+ regulatory T cells. Carranza F, Falcón CR, Nuñez N, Knubel C, Correa SG Bianco I, Maccioni M, Fretes R Triquell MF, Motrán CC, and Cervi L. PLoS One. 2012.7:40356.
2012. Pregnancy-specific glycoprotein 1a activates dendritic cells to provide signals for Th17-Th2-, and Treg-cell polarization. Martínez F, Knubel CD, Sanchez MC, Cervi L. and Motrán CC. European Journal of Immunology. 42:1573-1584.
2012. Adoptive transfer of dendritic cells pulsed with Fasciola hepatica antigens and LPS confers protection against fasciolosis in mice. Falcón C., Carranza F, Aoki P, Sanchez C., Motrán Cand Cervi L. Journal of infectious diseases. 205:506-14.
2011. 3-Hydroxy Kynurenine Treatment Controls T. cruzi Replication and the Inflammatory Pathology Preventing the Clinical Symptoms of Chronic Chagas Disease. Knubel CP, Martínez FF, Acosta Rodríguez EV, Altamirano A, Rivarola HW, Diaz Luján C, Fretes RE, Cervi L., MotránCC. PLoSOne. 2011;6(10):e26550.
2010. Excretory-secretory products (ESP) from Fasciola hepatica inhibit TLR-dependentmaturation and confer anti-inflammatory properties to myeloid dendritic cells. Falcon C., Carranza F, Knubel C, Martinez F, Motran C and Cervi L. Veterinary Immunology and Immunopathology.137:36-46.
2010.Indoleamine 2,3Dioxigenase(IDO) is critical for the host resistance against Trypanosoma cruzi..Knubel, CP,.Martínez FF, Fretes RE, Díaz Lujan C, Theumer M Cervi L. and Motrán CC. FASEB Journal. 8:2689-701.
2008. Control of dendritic cells maturation and function by triiodothyronine (T3) .Mascanfroni I, Montesinos MM, Susperreguy S, Cervi L.,Ramseyer V., Masini-Repiso AM:, Targovnik, Rabinovich GA and Pellizas CG. FASEB Journal. 4:1032-1042.
2007. Excretory-Secretory Products from Fasciola hepatica induce eosinophil apoptosis by a caspase dependent mechanism. Serradell MC, Guasconi L, Cervi L., Chiapello LS and Masih DT. Veterinary Immunology and Immunopathology. 15: 197-208.
2005. TLR-activated dendritic cells provide a MyD88-Dependent negative signal for Th2 cell development. Sun J, Walsh M, Villarino A, Cervi L, Hunter C, Choi Y, and Pearce EJ. Journal of Immunology. 174:7454-7459.
2004. Helminth antigens modulate TLR-initiated dendritic cell activation. Kane C, Cervi L., Sun J, Masek K, Shapira S, Hunter CA and Pearce EJ. Journal of Immunology. 174:742-751.
2004. Th2 response polarization during infection with the helminth parasite Schistosoma mansoni. Pearce EJ, Kane C, Sun J, Taylor J, McKee A S and Cervi L. Immunological Reviews. 201:117-26.
2004. Dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-Th1 and helminth-specific-Th2 responses. Cervi L., MacDonald AS, Kane C, Dzierszinski F, and Pearce EJ. Journal of Immunology, 172:2016-2020.

Publicaciones del Proyecto de Inmunidad antifúngica

Fasciola hepatica excretory-secretory products induce CD4+T cell anergy via selective upregulation of PD-L2 expression on macrophages in a Dectin-1 dependent way. Guasconi L., Chiapello LS., Masih D.T. Immunobiology.Jul; 220(7):934-9. doi: 10.1016/j.imbio.2015.02.001
Microsatellite-primed PCR and random primer amplification polymorphic DNA for identification and epidemiology of dermatophytes. Spesso MF, Nuncira CT, Burstein V, Masih DT, Dib MD, Chiapello LS. European Journal of Clinical Microbiology & Infectious Diseases. 2013 Aug;32(8):1009-15
Eosinophils elicit proliferation of naive and fungal-specific cells in vivo so enhancing a T helper type 1 cytokine profile in favour of a protective immune response against Cryptococcus neoformans infection. Garro AP, Chiapello LS., Baronetti JL, Masih DT. Immunology. 2011 Oct;134(2):198-213
Treatment of rats with heat killed cells (HKC) of Cryptococcus neoformans var. grubii induces cellular activation in spleen and lymphatic nodes. Baronetti JL, Chiapello LS., Garro AP, Masih DT. Comparative Immunology, Microbiology and Infectious Diseases. 2011 Jul;34(4):327-34
Mycetoma of the scalp due to Microsporumcanis: hystopathologic, mycologic, and immunogenetic features in a 6-year-old girl. Chiapello LS., Dib MD, Nuncira CT, Nardelli L, Vullo C, Collino C, Abiega C, Cortes PR, Spesso MF, Masih DT.
Diagnostic Microbiology and Infectious Disease. 2011 May;70(1):145-9
Rat Eosinophils stimulate the expansion of Cryptococcus neoformans specific CD4+ and CD8+ T cells with a TH1 profile. Ana P. Garro, Laura S. Chiapello, José L. Baronetti, Diana T. Masih
Immunology. 2011 Feb;132(2):174-87.
Cryptococcus neoformans and Cryptococcus gattii genes preferentially expressed during rat macrophage infection. LetíciaGoulart, LíviaKmetzsch Rosa e Silva, Laura Chiapello, Carolina Silveira, Juliana Crestani, Diana Masih, MarileneHenningVainstein.
Medical Mycology, 2010 Nov;48(7):932-41.
Differential activation of peritoneal cells by subcutaneous treatment of rats with criptococcal antigens.Baronetti JL, Chiapello LS., Garro AP, Masih DT. Clinical and Vaccine immunology, 16 (8): 1213–1221. 2009
Cryptococcus neoformansglucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway.Chiapello LS., Baronetti JL, Garro AP, Spesso MF, Masih DT.International Immunology. 20 (12): 1527–1541. 2008.
Excretory-Secretory Products from Fasciola hepatica induce eosinophil apoptosis by a caspase-dependent mechanism. M C Serradell, L Guasconi, L Cervi, LS Chiapello, DT Masih.Veterinary Immunology and Immunopathology.117 (3-4): 197-208. 2007
Heat Killed Cells (HKC) of Cryptococcus neoformans var. grubii Induces Protective Immunity in Rats: Immunological and Histopathological Parameters. Baronetti JL, Chiapello LS., Aoki MP, Gea S, Masih DT. 2006. Medical Mycology. 44(6): 493-504.
Immunosuppression, IL-10 synthesis and apoptosis are induced in rats inoculated with Cryptococcus neoformansglucuronoxylomannan. L. S. Chiapello, J Baronetti, M. P. Aoki, S. Gea., H. R. Rubinstein and Masih D. T. Immunology. 113:392-400. 2004
Immunization of rats against Fasciola hepatica using crude antigens conjugated with Freund adjuvant or Oligodeoxynucleotides.L. Cervi, J. Borgonovo, M. Egea, L.S. Chiapello y D.T. Masih.Veterinary Immunology and Immunopathology. 97: 97-104.
Apoptosis Induction by Glucuronoxylomannan of Cryptococcus neoformans. L. S. Chiapello, M. P. Aoki, H. R. Rubinstein and D.T. Masih. Medical Mycology. 41 (4): 347-353.
Mechanisms for Induction of Immunosuppression during Experimental Cryptococcosis: Role of Glucuronoxylomannan.L. Chiapello, P. Iribarren, L. Cervi, H. Rubinstein, and D.T Masih.Clinical Immunology. 100:96-106.
Involvement of Nitric Oxide in Protective Mechanism During Experimental Cryptococcosis.Rossi G., Cervi L., García M., Sastre D., Chiapello L. and Masih D. T.Clinical Immunology. 90:256-265.